

SIDDHARTH GROUP OF INSTITUTIONS:: PUTTUR (AUTONOMOUS)

 $Siddharth\ Nagar,\ Narayanavanam\ Road-517583$

OUESTION BANK (DESCRIPTIVE)

Subject with Code:Structural Design (18CE0115) Course & Branch: B.Tech - CE

Year & Sem: III-B.Tech & I-Sem Regulation: R18

UNIT –I RCC STRUCTURES, BEAMS AND LIMIT STATE OF SERVICEABILITY

1	a	State the different limit states considered in the design.	[L1][CO1]	[2M]
	b	Write a short notes on (i) Characteristics strength of materials and characteristic	[L1][CO1]	[2M]
		loads		
	c	What is the partial safety factor for material and partial safety factor for load	[L1][CO1]	[2M]
	d	Write about depth of neutral axis and limiting depth of neutral axis	[L1][CO1]	[2M]
	e	Define effective depth and effective cover	[L1][CO1]	[2M]
2) State the assumption made in limit state of collapse in bending for the design of reinforced concrete section.	[L1][CO1]	[4M]
) Draw the strain and stress distribution for singly reinforced beam and derive	[L2][CO1]	[6M]
		pression for depth of neutral axis, leaver arm and moment of resistance with		[UIVI]
		spect to concrete and steel.		
3		singly reinforced rectangular beam of width 230mm and 535mm effective depth is	[L3][CO2]	[10M]
		bjected to a bending moment of 90KNm at working loads. Find the steel area	[20][002]	[]
		quired. The material used are M20 grade concrete and Fe 415 grade steel.		
4		singly reinforced concrete beam 300x550mm is reinforced with 5 bars of 16mm	[L3][CO2]	[10M]
		ameter with an effective cover of 50mm. The beam is simply supported over a span		_
		5m. Find the safe uniformly distributed load the beam can carry use M20 grade		
	co	ncrete and Fe 415 grade steel.		
5	De	esign the reinforcement for a reinforced concrete beam 250 mm wide and 550 mm	[L4][CO2]	[10M]
	de	ep of M20 grade concrete to resist an ultimate moment of 200 KNm and effective		
	co	ver is 50 mm. Use Fe415 grade steel.		
6		etermine the ultimate moment of resistance of a reinforced concrete beam of	[L3][CO2]	[10M]
		ctangular section 250mm wide and 500mm effective depth. Area of steel consists		
		6 Nos 20mm diameter in tension side and 2 Nos of 20mm diameter in		
		mpression side. Using M25 grade concrete and Fe 415 grade steel and an effective		
		ver 40mm on both sides.		
7		T- beam of effective flange width of 740 mm, thickness of slab 100mm, width of	[L3][CO2]	[10M]
		240mm and effective depth 400mm is reinforced with 5 numbers of 20mm		
		ameter bars. Determine the moment of resistance of the section. The materials are		
0		15 grade concrete and Fe250 grade steel.	[] 4][CO2]	[10 N /[]
8	De	esign a singly reinforced concrete beam of clear span 5m to support a design orking live load of 10 KN/m. Adopt M20 grade concrete and Fe 415 grade steel.	[L4][CO2]	[10M]
9		esign a reinforced concrete beam of rectangular section of effective span 8m to	[L4][CO2]	[10M]
		pport a design working live load of 30 KN/m. The overall size of the beam has to	[L+][CO2]	[IOIVI]
		restricted to 300 mm x 650 mm. Use M20 grade concrete and Fe 415 grade steel.		
		fective cover is 50 mm.		
	1	100110 00101 10 00 111111	l	

Course Code: 18CE0115

Design a rectangular simply supported reinforced concrete beam over a clear span of 6m. The superimposed load is 30KN/m and support width is 230mm each. Use M20 grade concrete and Fe 415 grade steel. Check the design for deflection.

UNIT –II DESIGN FOR SHEAR, TORSION, BOND AND RC SLABS, STAIRCASE

c d e	State the minimum requirement of shear reinforcement Define one way slab Define two way slab Define staircase einforced concrete beam of rectangular section has a width of 250 mm and an ctive depth of 500 mm. The beam is reinforced with 4 bars of 25 mm diameter the tension side. Two of the tension bars are bent up at 45° near the support ion. In addition the beam is provided with two legged stirrups of 8 mm diameter 50 mm centers near the support. If $f_{ck} = 25 \text{ N/mm}^2$ and $f_y = 415 \text{ N/mm}^2$, estimate ultimate shear strength of the support section.	[L1][CO3] [L1][CO3] [L1][CO3] [L1][CO3]	[2M] [2M] [2M] [2M] [10M]
c d e	Define one way slab Define two way slab Define staircase einforced concrete beam of rectangular section has a width of 250 mm and an ctive depth of 500 mm. The beam is reinforced with 4 bars of 25 mm diameter the tension side. Two of the tension bars are bent up at 45° near the support ion. In addition the beam is provided with two legged stirrups of 8 mm diameter 50 mm centers near the support. If f_{ck} = 25 N/mm² and f_y = 415 N/mm², estimate ultimate shear strength of the support section.	[L1][CO3] [L1][CO3] [L1][CO3]	[2M] [2M] [2M]
2 A r effe	Define two way slab Define staircase einforced concrete beam of rectangular section has a width of 250 mm and an ctive depth of 500 mm. The beam is reinforced with 4 bars of 25 mm diameter the tension side. Two of the tension bars are bent up at 45° near the support ion. In addition the beam is provided with two legged stirrups of 8 mm diameter 50 mm centers near the support. If $f_{ck} = 25 \text{ N/mm}^2$ and $f_y = 415 \text{ N/mm}^2$, estimate ultimate shear strength of the support section.	[L1][CO3] [L1][CO3]	[2M]
e 2 A reffe	Define staircase einforced concrete beam of rectangular section has a width of 250 mm and an ctive depth of 500 mm. The beam is reinforced with 4 bars of 25 mm diameter the tension side. Two of the tension bars are bent up at 45° near the support ion. In addition the beam is provided with two legged stirrups of 8 mm diameter 50 mm centers near the support. If f_{ck} = 25 N/mm ² and f_y = 415 N/mm ² , estimate ultimate shear strength of the support section.	[L1][CO3]	[2M]
2 A reffe	einforced concrete beam of rectangular section has a width of 250 mm and an ctive depth of 500 mm. The beam is reinforced with 4 bars of 25 mm diameter the tension side. Two of the tension bars are bent up at 45° near the support ion. In addition the beam is provided with two legged stirrups of 8 mm diameter 50 mm centers near the support. If f_{ck} = 25 N/mm² and f_y = 415 N/mm², estimate ultimate shear strength of the support section.		
effe on	ctive depth of 500 mm. The beam is reinforced with 4 bars of 25 mm diameter the tension side. Two of the tension bars are bent up at 45° near the support ion. In addition the beam is provided with two legged stirrups of 8 mm diameter 50 mm centers near the support. If $f_{ck}=25 \text{ N/mm}^2$ and $f_y=415 \text{ N/mm}^2$, estimate ultimate shear strength of the support section.	[L3][CO3]	
on	the tension side. Two of the tension bars are bent up at 45° near the support ion. In addition the beam is provided with two legged stirrups of 8 mm diameter 50 mm centers near the support. If $f_{ck}=25 \text{ N/mm}^2$ and $f_y=415 \text{ N/mm}^2$, estimate ultimate shear strength of the support section.		
	ion. In addition the beam is provided with two legged stirrups of 8 mm diameter 50 mm centers near the support. If f_{ck} = 25 N/mm ² and f_y = 415 N/mm ² , estimate ultimate shear strength of the support section.		
BCCI	50 mm centers near the support. If f_{ck} = 25 N/mm ² and f_y = 415 N/mm ² , estimate ultimate shear strength of the support section.		
at 1	ultimate shear strength of the support section.		
	9		
	einforced concrete beam of rectangular section 300 mm wide is reinforced with	[L4][CO3]	[10M]
	bars of 25 mm diameter at an effective depth of 600 mm. The beam has to	[][]	[
	sts a factored shear force of 400 KN at support section. Assume f_{ck} = 25 N/mm ²		
	$f_y = 415 \text{ N/mm}^2$, design vertical stirrups for the section.		
	imply supported beam is 8 m in span and carries a uniformly distributed load of	[L4][CO3]	[10M]
	KN/m. If 6 Nos. of 25 mm bars are provided at the centre of the span and 3 Nos.		
	hese bars are continued into the supports, check the development length at the		
	ports assuming M 20 grade concrete and Fe 415 steel.		
5 Des	ign a reinforced concrete beam of clear span 5m to support a design working live	[L4][CO3]	[10M]
load	of 10 KN/m. Adopt M20 concrete and Fe 415 grade steel.		
6 Des	ign a simply supported RCC slab for an office floor having clear dimensions of	[L4][CO3]	[10M]
	x 10 m with 230 mm wall all-round. Using M20 grade concrete and Fe415		
	le steel. Live load on the slab is 4 KN/m ² and weight of weathering course over		
	slab is 1.5 KN/m ² .		
	ign a reinforced concrete slab to carry a live load of 3 KN/m ² on an effective	[L4][CO3]	[10M]
_	n of 3.5 m. Use M 20 grade concrete and Fe 415 grade steel. Assume floor finish		
	KN/m ² .	FT 43FG003	F4.03.47
	ign a two-way slab for a room of size 4 m x 5 m with discontinuous and simply	[L4][CO3]	[10M]
	ported edges on all the sides with corners prevented from lifting to support a live		
	of 4 KN/m ² and weight of weathering course over the slab is 0.6 KN/m ² . Adopt		
	0 grade concrete and Fe 415 grade steel. ign the floor slab for a hall 4 m x 3.5 m clear in size, if live load is 3 KN/m ² and	[L4][CO3]	[10M]
	r finish of 1 KN/m ² . The edges of the slab are simply supported and corners are	[L4][CO3]	
	held down. Use M 20 grade concrete and Fe 415 grade steel.		
	ign a dog-legged stair for a building in which the vertical distance between	[L4][CO3]	[10M]
	rs is 3.3 m. Adopt rise and tread of each step are 150 mm and 225 mm	[2.][000]	[101,1]
	ectively. The stair hall measures 2.5 m x 4.5 m. The live load may be taken as 3		
	m ² and floor finish is 0.6 KN/m ² .Use M 20 grade concrete and Fe 415 grade		
	l. Assume the stairs are supported on 230 mm walls at the ends of outer edges of		
	ling slabs.		

Course Code: 18CE0115

UNIT –III DESIGN OF RC COMPRESSION MEMBERS AND RC FOUNDATION

1	a	Define axially loaded column	[L1][CO4]	[2M]
	b	Define eccentrically loaded column	[L1][CO4]	[2M]
	c	What is the minimum eccentricity to be adopted while designing columns	[L1][CO4]	[2M]
	d	Define short column and long column	[L1][CO4]	[2M]
		1 1 1 1 1 1 1 1 1 8	[L1][CO4]	[2M]
2		esign a short axially loaded square column 500 mm x 500 mm for a service load of	[L4][CO4]	[10M]
		00 KN. Use M 20 grade concrete and Fe 415 HYSD bars.		
3		esign a circular column to carry an axial load of 1000 KN. Use M 20 grade ncrete and Fe 415 steel.	[L4][CO4]	[10M]
4	De ax	esign the reinforcement in a column of size $400 \text{ mm} \times 600 \text{ mm}$, subjected to an ial working load of 2000 KN . The column has an unsupported length of 3 m and braced against side way in both directions. Use M 20 grade concrete and Fe 415	[L4][CO4]	[10M]
5	De cor 12	esign the longitudinal and lateral reinforcement in a rectangular reinforced ancrete column of size 300 mm x 400 mm subjected to a design ultimate load of 00 KN and an ultimate moment of 200 KNm with respect to the major axis. Use 20 grade concrete and Fe 415 HYSD bars.	[L4][CO4]	[10M]
6	De ult KN	esign the reinforcements in a short column 400 mm x 600 mm subjected to an imate axial load of 1600 KN together with ultimate moments of 120 KNm and 90 Nm about the major and minor axis respectively. Use M 20 grade concrete and Fe 5 steel.	[L4][CO4]	[10M]
7	De co	esign a reinforced concrete footing of uniform thickness for a reinforced concrete lumn of 400 mm x 400 mm size carrying an axial load of 1200 KN. Use M 20 add concrete and Fe 415 steel. The safe bearing capacity of soil is 220 KN/m ² .	[L3][CO4]	[10M]
8		ith neat sketches show various types of shallow footings and briefly explain	[L2][CO4]	[10M]
9	A	reinforced concrete column of size 300 mm x 300 mm carries a load of 750 KN.	[L3][CO4]	[10M]
		e safe bearing capacity of soil is 200 KN/m ² .Design an isolated column footing		
		th uniform thickness. Use M 20 grade concrete and Fe 415 steel.		
10		esign a square footing of uniform thickness for a reinforced concrete circular	[L3][CO4]	[10M]
		lumn of diameter 400 mm carrying an axial load of 1000 KN. The safe bearing		
	caj	pacity of soil is 200 KN/m ² . Use M 20 grade concrete and Fe 415 steel.		

UNIT –IV STEEL STRUCTURES, CONNECTIONS AND TENSION MEMBERS

1	a What are the different types of steel structures?	[L1][CO5]	[2M]
	b Write down the properties of steel structures	[L1][CO5]	[2M]
	c Write types of loads to act on structures	[L1][CO5]	[2M]
	d Define tension member	[L1][CO6]	[2M]
	e What is Lug angle?	[L1][CO6]	[2M]
2	(a) Explain the various types of bolted connections with neat sketches	[L2][CO5]	[5M]
_	(b) A 18mm thick plate is joined to 16mm plate by 200 mm long(effective) butt	[L3][CO5]	[5M]
	weld. Determine the strength of joint if (i) A Double V butt weld is used and (ii) A Single V butt weld is used.		[6111]
3	Find the efficiency of the lap joint shown in figure. Given by M20 bolts of grade 4.6 and Fe 410(E250) plates are used. [L3][CO5][5M]	[L3][CO5]	[10M]
	20 mm		
	5 20 min		
	- 60 mm 30 mm		
	ϕ		
	60 mm		
	$\frac{1}{1}$ φ $\frac{1}{30}$ $\frac{1}{mm}$		
4	(a)Define welding. Explain various types of weld connections with neat sketches.	[L1][CO5]	[5M]
	(b)What are the advantages and disadvantages of welded connections?	[L1][CO5]	[5M]
5	(a)Define bolting and explain various terminologies in bolted connections.	[L2][CO5]	[5M]
	(b)Difference between black bolts and High strength Friction Grip bolts.	[L2][CO5]	[5M]
6	Design a suitable longitudinal fillet weld to connect the plates as shown in figure	[L4][CO5]	[10M]
	to transmit a pull equal to the full strength of small plate. Given plates are 12 mm		
	thick, grade of plate Fe 410 and welding to be made in workshop.		
	/ 100 mm / 160 mm /		
7	Determine the design strength of the plate 120mm or 12mm with the later for	[[2][[0](2]	[10]
'	Determine the design strength of the plate 130mm x 12mm with the holes for 16mm diameter bolts as shown in figure. Steel used to Fe 410 grade quality.	[L3][CO6]	[10M]
	Tomin diameter bons as shown in figure. Steel used to re 410 grade quality.		
	Critical section		
	35		
	r = 35 + - +		
1 1			
	4 - 35 - 4 3		
	4		

8	Determine the tensile Strength of a roof truss member 2ISA 9060,6 mm connected to the gusset plate of 8mm thickness by 4 mm weld as shown in figure below. The effective length of weld is 200mm. ISA 9060, 6 mm Area under shear Area under shear Area under shear Area under shear	[L3][CO6]	[10M]
9	Determine the design tensile strength of 160 x 8 mm plate with the holes for 16 mm bolts as shown in figure. Plates are of steel, grade Fe 415	[L3][CO6]	[10M]
10	Design a double angle tension member connected on each side of a 10 mm thick gusset plate to carry an axial factored load of 375 KN. Use 20 mm black bolts, Assume shop Connection.	[L4][CO6]	[10M]

UNIT -V DESIGN OF COMPRESSION MEMBERS AND BEAMS

1	a Define Slenderness ratio	[L1][CO6]	[2M]
	b Write the formula for the design compressive stress of axially loaded compression members	[L1][CO6]	[2M]
	c Draw the column base plate diagram	[L1][CO6]	[2M]
	d Define Plastic moment capacity	[L1][CO6]	[2M]
	e Define Plastic section modulus	[L1][CO6]	[2M]
2	Design a single angle strut connected to the gusset plate to carry 180 KN factored	[L4][CO6]	[10M]
	load. The length of the strut between center to center connections is 3m.		
3	A column 4 m long has to support a factored load of 6000 KN. The column is	[L4][CO6]	[10M]
	effectively held at both ends and restrained in direction at one of the ends. Design		
	the column using beam sections and plates.		
4	Determine the design axial load capacity of the column ISMB300@577 N/m, If	[L3][CO6]	[10M]
	the length of the column is 3m and its both ends pinned.		
5	A column section ISHB 300 @ 577 N/m is carrying a factored load of 600 KN. A	[L3][CO6]	[10M]
	factored moment of 30 KN-m and factored shear force of 60 KN. Design a suitable		
	column splice. Assume ends are milled.		
6	Design a slab base for a column ISHB 300 @ 577 N/m carrying an axial factored	[L4][CO6]	[10M]
	load of 1000 KN. M20 Concrete is used for the foundation. Provide welded		
	connection between column and base plate.		
7	Design a simply supported I-section to support the slab of hall 9m x 24m with	[L4][CO6]	[10M]
	beam spaced at 3m centre to centre. Thickness of slab is 100mm. Consider floor		
	finish load 0.5 KN/m ² and live load of 3 KN/m ² . The grade of steel is		
	E=250.Assume that adequate lateral support is provided to compression flange.		
8	Design a simply supported beam of 10 m effective span carrying a total factored	[L4][CO6]	[10M]
	load of 60 KN/m. The depth of beam should not exceed 500 mm. The compression		
	flange of the beam is laterally supported by floor construction. Assume stiff end		
	bearing is 75 mm.	ET 43100 C	F4.03.43
9	Design a beam 4m effective length subjected to 50 KN/m UDL (Including self	[L4][CO6]	[10M]
10	weight) the flanges are embedded in slab and simply supported at both the ends.	H AHOOG	F4.03.47
10	Design a slab base for a column ISHB 350 @ 710 N/m carrying an axial factored	[L4][CO6]	[10M]
	load of 1100 KN including self weight. The grade of concrete is M20.Provide		
	same projection of base plate beyond the column in both directions.		

Prepared by: V.VENKATESH Assistant Professor/CE